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Overview 

• An architecture is presented for a structural health 

monitoring (SHM) system using the framework of 

intelligent agents 

–Combines reflexive and deliberative elements 

– Includes information fusion, feedback, and 

context-based reasoning to achieve goals 

• The architecture is demonstrated in the laboratory 

on a representative airframe component 

• Benefits of the architecture are summarized 
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Outline 

• Background 

• Integrated Systems Health Management (ISHM) 

• Structural Health Monitoring (SHM) 

• Intelligent Agents 

 

• Agent Architecture for SHM 

 

• Experiment and  Results  

 

• Summary  



Determine Ability to Perform Mission Determine Ability to Perform Mission 

Assess Damage Assess Damage 

Detect Damage Detect Damage 

Integrated Systems Health Management 



ISHM Architecture 

Embedded 

Diagnostics/Prognostics  

Agents 

VMS 
Flight Control 

IMS 

Operation Control Center Reasoning 
• Fleet wide statistics 
• Condition Based Maintenance 
• Mission Decision Validation 

----------------
Vehicle Level Reasoning: 
• Multi subsystem capability 
• Ambiguity Resolution 
• Miss ion decision 
• Damage Assessment 

--------- - -------
Subsystem Level Reasoning: 
• Multi sensor data fusion 
• Subsystem Capability 
• Anomaly Detection 
• Sensor Validation 
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Structural Health Monitoring 

• SHM systems are automated methods for determining 

adverse changes in integrity of mechanical systems 

• SHM systems are designed to answer the following: 

 

 

 

 

 

 

• Mainly based on sensor data; damage estimates based 

on statistical pattern recognition methods 

What are consequences 

of damage? 

 

How significant is the 

damage? 

 

Where is the damage? 

 

Is there damage? 
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Simple Reflex Agent 
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Sensors 

Actuators 

What  is the 

world like now? 

What action I 

should do now? 

Condition-action 

rules; based on 

satisfying objectives 

An agent is a computer system, situated in an environment, 

capable of autonomously selecting actions, to best satisfy 

specified objectives 
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Intelligent Agent Architecture – 
Overview 

Sensors 

Perceptual  

System 

Conceptual 

System 

Actuators 

Request for  

Specific Processing 

Actuation  

Commands 

State 

Information 

Stimuli-   

Response 

 Data 

State 

Estimates 

Task 

 Objectives 

• Intelligent agent architecture combines perceptual (sensory 

data) and conceptual (using context and objectives) processing 

to perform condition-dependent reasoning for state selection 
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Intelligent Agent Architecture – 
Detail   

State 

Characterization 

Operational / 

Environmental 

Data Processing 

Situated State 

Conceptualization 

Situated 

Deliberation 
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Sensors 

Actuators 
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Conceptual System Perceptual System 
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Perceptual and Conceptual Blocks 

• Operational and Environmental Processing 

– Measurements that give context; indicate how the vehicle is 

being operated 

• State Characterization 

– Estimate health status from sensor data 

 

• Situated State Conceptualization 

– Use context information and/or physics-based models to 

refine state estimates; request additional measurements  

• Situated Deliberation 

– Choose action to best satisfy objectives from the Tasking 

Agent given the current context and  state estimates 
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Example SHM Application 

      

•  Apply the framework to representative aircraft component 

     - Low level information (estimated crack length) is mapped 

        to provide high level information (risk) 

Flight Critical Component:  Wing Attachment Lug 

Material:  6061-T6 Aluminum Alloy 

Failure Mode:  Corner crack 

A - Direction 

C - Direction 

Spacer 

Lug 
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Wing Attachment Lug 

      

• Loading: Constant amplitude sinusoid between 0 and 1000 lbs 

• Estimated Life: 14,500 cycles 

• Estimated Critical Crack Size: A = 0.35” and C = 0.70”  

• Run: {1000 ,500, 250}  cycles, pause, record signals and visual crack 
 

C

A
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• Loads 

• Cycle Count 
Operational States 

State 

Characterization 

Operational/ 

Environmental Data 

Processing 

Situated State 

Conceptualization 

Situated 

Deliberation 

Conceptual System Perceptual System 

Load Cell 

Cycle Counting 

Algorithm 

Cycle  

Count 

Loads 

# of  cycles 

Max and min loading 

Operational and Environmental  

Data Processing 
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State Characterization 

Actuators and Sensors 

Piezoelectric elements  

Sensing Modality 

   Ultrasonic elastic waves 

Damage Detection and Estimation 

   Regression models and neural networks 

actuator 

sensors 

State 

Characterization 

Operational/ 

Environmental Data 

Processing 

Situated State 

Conceptualization 

Situated 

Deliberation 

Conceptual System Perceptual System 



17 

State Characterization 

State 

Characterization 

Operational/ 

Environmental Data 

Processing 

Situated State 

Conceptualization 

Situated 

Deliberation 

Conceptual System Perceptual System 

Reference Signal 

Rij( t ) 

TOA 

Windows 

{ Wj( t ) } 

TOA 

Windows 

{ Wj( t ) } 

Compute 

Features 

F2 

Model 2:  

Artificial Neural 

Network 

Model 1:  

Regression 

Compute 

Features 

F1 

Reference Signal 

Rij( t ) 

a1 

a2 

^ 

^ 

Sensor Signals 

• Models trained to map changes in received 

sensor signals to estimated crack lengths 

Damage 

State 
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Situated State Conceptualization 
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Load Cycles 

1,000 lb

1,100 lb

1,200 lb

1,300 lb

1,400 lb

AFGROW Crack Length vs Cycles  

Operational State   
Information 

Damage State   
Information 

State 

Characterization 

Operational/ 

Environmental Data 

Processing 

Situated State 

Conceptualization 

Situated 

Deliberation 

Conceptual System Perceptual System 

•  AFGROW is predictive software for crack growth 

 

•  Situated Conceptualization includes rules for  

      -  fusing state estimates with predicted growth 

      -  requesting additional measurements 

Assumed initial flaw size = 0.02” 
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Situated State Conceptualization 
Scenario 

• Assume 4 models available for crack length estimates 

–  estimates 1 & 2 preferred over 3 & 4; simulates request for add’l data 

– threshold for declaring crack detection = 0.02” 

• At each measurement cycle, apply crack growth model based on loads and 

elapsed cycles to produce predicted length, P(n) 

• Selected crack length at cycle with agreement-based averaging of preferred 

estimates and P(n) 

 

 

 

Thresholding and 

Fusion Rules 

a1 
^ 

a3 
^ 

a4 
^ 

a2 
^ 

Crack Growth 

Model 

Sensor 

Data 

Loads, 

Cycles 

    Models ^ a 

Sel(n-1) P(n) 

Sel(n) 
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Situated State Conceptualization 

Cycle(n) NN1(n) REG1(n) NN2(n) REG2(n) P(n) 

41,000         X 

41,500         X 

42,000     X X   

42,500 X X       

43,000 X X     X 

43,500 X X       

44,000 X X     X 

44,500  X       X 

45,000 X X     X 

Cycle(n) NN1(n) REG1(n) NN2(n) REG2(n) P(n) 

54,000 X X       

54,500 X X     X 

55,000 X X     X 

55,500 X X     X 

56,000 X X     X 

56,500 X X     X 

57,000 X X     X 

57,500  X X     X 

58,000 X X     X 

58,500 X X     X 

59,000 X X     X 

59,500 X X     X 

59,750 X X       

Estimated and growth model agreements for averaging 
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Selected Crack Lengths vs Cycles  

• Application of threshold and fusion rules generate selected 

crack length at each measurement instant 
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Situated Deliberation 
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Crack Length (in) 

Estimated Cycles to Failure for 1000 lb 

State 

Characterization 

Operational/ 

Environmental Data 

Processing 

Situated State 

Conceptualization 

Situated 

Deliberation 

Conceptual System Perceptual System 

• AFGROW model provides remaining cycles 

– Remaining cycles related to risk of mission failure 

 

LOW RISK 

MEDIUM RISK 

HIGH RISK 

0.1 0.2 0.3 0.4 0.5 
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Situated Deliberation 

• Mission commander receives risk categorized as low, medium, or high 

based on remaining life at end of mission calculated using mission 

requirements and current state 

– Example: Assume mission categorized as requiring 4000 cycles at 

1000 lb load 

Risk Chart for 

4K Mission Cycles 

Requirement at 1000 

lb  

LOW: > 5K 

MEDIUM:  3K – 5K 

HIGH: < 3K 

Simulation 

Cycles 

 

AFGROW 

 

50% 

 

Visual 

40K 

45K 

47.5K 

50K 
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Summary 

• An intelligent agent architecture has been demonstrated in 

a laboratory SHM application 

– The architecture provides a coherent framework for 

combining perceptual and contextual information, and 

includes a deliberative processing element to facilitate 

high level decisions 

–  The assumed scenario allows missions to continue 

even when sensor readings indicate cracks exist 

• A change in CONOPS is needed before the 

assumed scenario can be a reality.   

• But a new CONOPS can lead to increased 

availability and lower maintenance costs 
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Are all state 

estimates 

within ± X% of 
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Situated Deliberation 

 <SPACE> 

 
 

From curves  𝑆𝐶 𝑛 = 0.28 and 𝐶𝑌𝐶1200 𝑛 = 7000.  The cycle at crack failure  

for 1200 lb is 𝑀𝐶𝑌𝐶1200 = 7603.  The mission success index is defined as  

𝑀𝐼 𝑛 =
𝑀𝐶𝑌𝐶1200 −𝐶𝑌𝐶1200  𝑛 

𝑀𝐶 (𝑛)
  and limited to values from 0 to 1.  In this case if an 

additional 10,000 cycles is required of the aircraft at (n) then the mission success index 

for a 1200 lb load is 𝑀𝐼 𝑛 =
7603 −7000

10,000
= 0.06  

 

MISSION SUCCESS INDEX DETERMINATION EXAMPLE 

  

𝑺𝑪(𝒏) 

 

𝑪𝒀𝑪𝟏𝟐𝟎𝟎(𝒏) 
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Data Processing 
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Conceptualization 
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Deliberation 

Conceptual System Perceptual System 



Selection Algorithm 

State 

Characterization 

Operational/ 

Environmental 

Data Processing 

Situated State 

Conceptualization 

Situated 

Deliberation 

Conceptual System Perceptual System 

Crack Selection Decision Algorithm (Decision is biased toward estimation states) 

{R is signal percentage index} 

If E1.(n)- R • E1. (n) :>;; E2(n) :>;; E1. (n) + R • E1.(n) and E1.(n)- R • E1.(n) :>;; E2(n) :>;; E1.(n) + R • E1.(n) 

is true then SC(n) = lft(n):lft(n) iffalsethen 

If E1.(n)- R • E1.(n) :>;; PC(n) :>;; E1.(n) + R • E1.(n) andPC(n)- R • PC(n) :>;; E1.(n) :>;; PC(n) + R • PC(n) 

is true then SC(n) = lft(n):PC(n) iffalsethen 

If E2(n)- R • E2 (n) :>;; PC(n) :>;; E2 (n) + R • E2 (n) andPC(n)- R • PC(n) :>;; E2(n) :>;; PC(n) + R • PC(n) 

is true then SC(n) = PC(u):lft(n) iffalsethen 

{lftrue result is not returned by this time then considers the other estimates} 

If E3(n)- R • E3 (n) :>;; E4 (n) :>;; E3 (n) + R • E3(n) and E4 (n)- R • E4 (n) :>;; E3(n) :>;; E4 (n) + R • E4 (n) 

is true then SC(n) = lfa(u):/!14(1>) iffalsethen 

If E3(n)- R • E3 (n) :>;; PC(n) :>;; E3 (n) + R • E3 (n) andPC(n)- R • PC(n) :>;; E3(n) :>;; PC(n) + R • PC(n) 

is true then SC(n) = lfa(u):PC(n) iffalsethen 

If E4 (n)- R • E4 (n) :>;; PC(n) :>;; E4 (n) + R • E4 (n) andPC(n)- R • PC(n) :>;; E4 (n) :>;; PC(n) + R • PC(n) 

is true then SC(n) = PC(u):/!14(1>) iffalsethen f'ir,::==::::lt:===;-"" 
{If true result is not returned by this time then crack is setto crack prediction} 



State Selection Example  
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Current SHM Approaches 

• Reflexive system (i.e., agent) suitable for well-defined problems 

with complete knowledge of environmental and operational 

conditions the system will encounter during operation (matched 

training and test conditions,  “static database”) 

• Under the static database conditions, reflexive techniques can 

correctly characterize states with high confidence. 

• Conversely, performance of reflexive systems degrade when 

presented with data obtained under even slightly different states or 

operating conditions (i.e., “dynamic database”).  

• Fragility of current SHM approaches exists primarily because they 

do not have an intrinsic ability to distinguish between changes in 

system health states, system operational states, or environmental 

conditions. 
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